

PROCESS R&D FOR DROPLET-PRODUCED POWDERED MATERIALS

JOSEPH LIBERA (PI) YUJIA LIANG KYOJIN KU EJ LEE HACKSUNG KIM

Project ID: BAT315

2020 DOE Vehicle Technologies Office Virtual Annual Merit Review (AMR), June 1-4, 2020,

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Project Start Date: September 2016
- Project End Date: September 2020

Budget

- Total project funding:
 - \$490K in FY19

Barriers

- Cost of high-energy Li-ion
- Life

Partners

- Cabot Corporation
- ORNL

Supporting battery research for:

DOE Battery Research Community

Objectives - Relevance

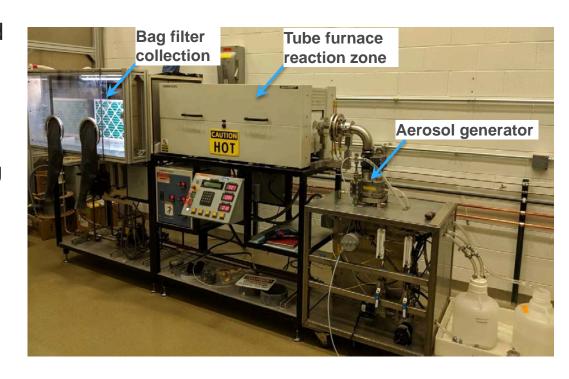
- To produce customized and optimized LLZO for the basic battery community and to produce large crystal-domain cathode powders.
- The relevance of this task to the DOE Vehicle Technologies Program is:
 - This synthesis technique has the potential to provide large cost reduction through continuous high-volume production methods.
 - The high purity and crystallinity of FSP materials has the potential to improve performance for the same materials synthesized by other means.

Approach and Strategy

- Flame Spray (combustion synthesis) is a proven industrial technology for commodity scale production of numerous simple compounds (TiO₂, C black, SiO₂). The ANL FSP facility provides a highly instrumented pre-pilot powder production facility for the development and optimization of aerosol production of powders. This heavily instrumented facility provides in-operando scientific feedback to enable rapid materials development and fundamental understanding of this complex manufacturing process.
- Spray Pyrolysis and Spray Drying have been added to compliment the aerosol synthesis capability. They provide a complimentary perspective and greatly aid in the understanding of the challenges each new material brings.
- Maintain a close relationship with our industrial partners to assure we follow sensible routes for potential commercialization.

Approach - Milestones

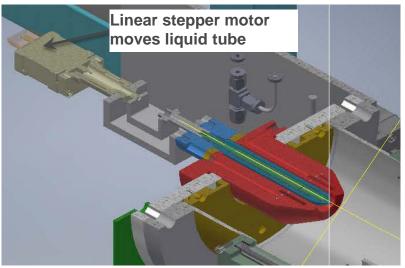
		Phase 1 - FSP Facility Construction and Commissioning		
FY	16	Project start and Completion of Flame Spray Pyrolysis System Design	Completed	
FY	17	Completed construction and commissioning of FSP Facility	Completed	
		Phase 2 - FSP Research for Battery Materials		
FY	18	Completed First year of materials research, discovered low temperature c-LLZO and completed addition of advanced diagnostics including scanning mobility particle sizing, laser PLIF, and optical emission spectroscopy	Completed	
FY 1	19	Added Spray Pyrolysis and Spray Drying to aerosol synthesis portfolio	Completed	Oct-2019
		Upgraded OES with medium resolution spectrograph; Added in-situ Raman spectroscopy for FSP	Completed	Mar-2020
		Discovered new routes for c-LLZO using spray pyrolysis and spray drying	Completed	Jan-2020
		Completed broad comparative survey of NCM cathode active phase materials using FSP and SP	Completed	Jan 2020
		Commercialize c-LLZO production	ongoing	Sep-2020


Accomplishment Summary Aerosol Synthesis Facility

- Added Spray Pyrolysis and Spray Drying as additional Aerosol synthetic routes for c-LLZO and cathode active phases.
- Added In-Situ Raman Spectroscopy for FSP.
- Added a medium resolution spectrograph for Flame Emission Spectroscopy
- Added an improved burner design for FSP with a motorized air-gap control for the atomizing nozzle and cooling for the burner body.

Facility Expansion and Improvement

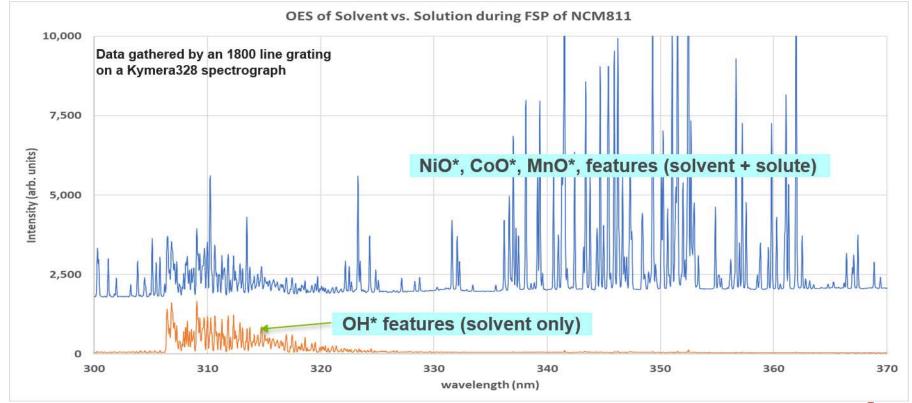
- Received and recommissioned Nomad VIII spray pyrolysis system donated to ANL by Cabot Corp.
 - Ultrasonic nebulization
 - 500 g/hour solution processing rate.
 - 50 g/hour powder production rate
 - Material collection in bag filter.
 - Added glove panel PPE for rapid collection and turnover.



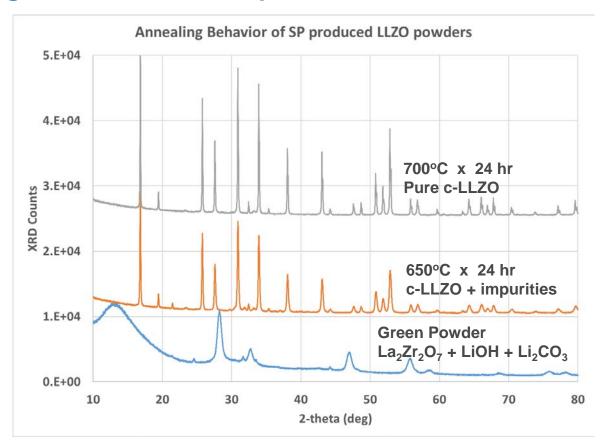
^{*} This effort for this work was performed jointly with project "Aerosol Manufacturing Technology for the Production of Low Cobalt Li ion Battery Cathodes". See bat411

Facility Expansion and Improvement

- Added In-Situ UV-Raman spectroscopy for FSP.
 - 266,355,512, and 633 nm excitation
 - FSP powder sample accumulated onto a sample window in <5 min. Measurement 5-15 minutes.
- Upgraded burner for FSP
 - Motorized nozzle air-gap for dynamic atomization adjustment and optimization.
 - Added burner body cooling to improve process consistency for short duration collections.
- Added medium resolution spectrograph for monitoring flame chemistry by optical emission spectroscopy.

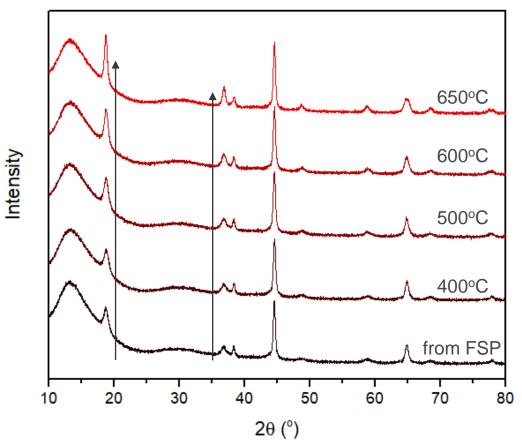


Optical Emission Spectroscopy for FSP Synthesis Diagnostic

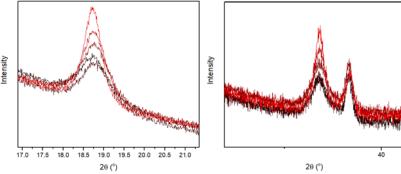

- OES provides chemical mapping of pre-condensation gas phase radicals which informs us about the processes leading to the formation of target material phases
- Artificial Intelligence(AI) and Machine Learning (ML) tools are being applied to help manage and interpret the vast amount of data gathered.
- A flame-axis probe array provides a linear mapping of flame chemistry

Additional manufacturing routes to low-temperature c-LLZO

- Spray Pyrolysis was used to produce c-LLZO through low-temperature calcination
- Potentially the most economic route for large scale production.
- c-LLZO was also produced using Spray Drying but a higher calcination temperature of 900°Cwas required since the emergent phase was tetragonal LLZO.

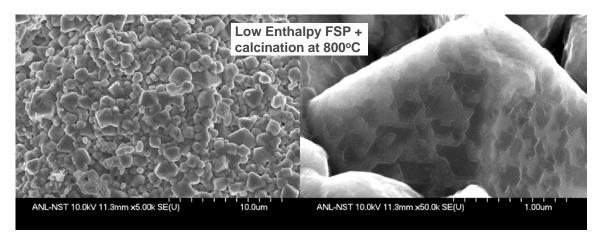

Accomplishment Summary Cathode Active Phase

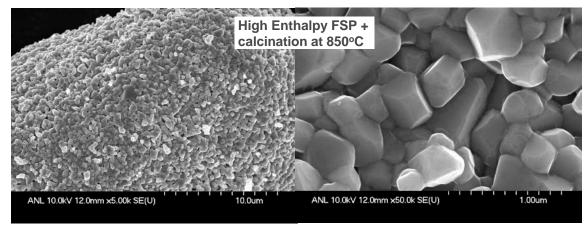
- Explored NCM 111, 622, and 811, 9055, and NCA by FSP and SP synthesis to obtain a broad perspective of material potential across a broad spectrum of TM oxide active phases*.
- Discovered NCM 111 spinel active phase using FSP.
- Discovered route to large single crystal NCM phase from FSP nano green powder.


 Note: low-Co candidates in this list were produced under project "Aerosol Manufacturing Technology for the Production of Low Cobalt Li ion Battery Cathodes". See bat411

FSP NCM111 powders exhibit a composite rock salt/spinel structure

* This work was performed in collaboration with E.J. Lee. See BAT251




- 111, 311 peaks increase with increasing annealing temperature, indicating the ordering formation
- Anneal at 650°C produced lithiated spinel NCM111 for the first time
- This material has an initial EC capacity of 150 mA/g.

Mapped NCM 811 Single Crystal Formation from FSP powders

- Single Crystal primary particle morphology is prevalent from FSP produced NCM precursor powders
- FSP was used to produce prelithiated NCM811 nano-powders from various solvent/precursor combinations.
- Produced powders are a mixture of LiOH, Li2CO3, and NCM rock salt phases with small incipient quantities of active phases (spinel and layered)
- The average single crystallite size depends on the FSP solution enthalpy – hotter flames result in smaller single crystallite size

Responses to Previous Year Comments

No reviewer comments were received from the 2019 AMR review.

Collaboration and Coordination with Other Institutions

 Cabot Corp. is a continuing partner in low-Co cathode active phase development. Cabot has also joined with ANL on 2020 TCF proposal to commercialize c-LLZO production.

 ANL is sponsoring a CRI Innovator with Northwestern University for the development of novel graphene-active material composite cathode architectures.

 ANL is supplying ORNL with aerosol-produced c-LLZO for evaluation in SSB manufacturing.

Remaining Challenges and Barriers

- Optimize c-LLZO for manufacturing processes that take advantage of the lowtemperature route to cubic LLZO
- Improve product quality through advanced FSP burner optimization.
- Optimize spray pyrolysis and/or spray drying for commercial scale production of c-LLZO
- One-step synthesis in FSP to the layered phase NCM materials.

Proposed Future Research

- Optimize blends of c-LLZO made by SP and FSP for SSB manufacturing.
- Reduce carbon use in FSP solutions to promote direct synthesis of target phases that are competitive with carbonate phases.
- Optimize FSP synthesis for direct production of ready to use battery cathode phases.
 - Follow the guidance of in-situ Raman for rapid process optimization.
 - Explore post-flame annealing for battery active phases and LLZO
- Continue exploration of emerging disordered rock-salt type cathode materials

Summary Slide

- Spray Pyrolysis and Spray Drying were added to the ANL aerosol synthesis capability.
- In-situ Raman spectroscopy and medium resolution flame spectroscopy was added the advanced diagnostics suite for the FSP system.
- High purity c-LLZO attained at a calcination temperature of 700 deg C was produced in the new Spray Pyrolysis reactor.
- Completed a broad survey of NCM active phases ranging from traditional NCM111 to current low-Co candidate.
- Established plan to commercialize c-LLZO production with Cabot Corp.

